A COMPUTATIONALLY-EFFICIENT BUILDINGS ENERGY MANAGEMENT APPROACH FROM ANCILLARY SERVICES

Texas Tech University Electrical and Computer Engineering Department

INTRODUCTION

The demand response capability can be considered an ancillary service to support the distribution systems operation during outages and limited available energy moments. With an efficient demand response algorithm, this power reduction request can be done without compromise the users' comfort and constraints.

SOLUTION DESCRIPTION

The present study proposes a new Building Energy Management System (BEMS) algorithm which considers a new regional strategy to reduced the required computation time of usual BEMS algorithm. Figure 1 shows the topology.

Figure 1. Simplified Control Topology.

 Table 1. Computational Time Requirement Comparison.

	Case	Time Duration [s]	
		Traditional Approach	Solution Approach
	Control Interaction	4.0930	1.5683
_	Entire Simulation	665.3728	63.2034

UNIVERSITY.

TEXAS TECH

15

10

Konrad Schmitt, Ilham Osman, Rabindra Bhatta, Mahtab Murshed, Manohar Chamana

Stephen Bayne

INITIAL RESULTS

The initial algorithm was deployed in the MATLAB platform and integrated with an building electrical model on Simulink.

Figure 2. Power Request Tracking.

The final validation testbed is compounded by a Controller Hardware-in-the-loop (C-HIL) topology. A Raspberry PI is responsible to host the BEMS control algorithm using **VOLTTRON** platform which is connected to OPAL-RT, Real-Time Digital Simulator. The simulator hosts the building model, which is controlled by the VOLTTRON commands. The Fig. 4 and 5 shows the VOLTTRON and OPAL-RT connection and testbed topology.

Figure 3. Granular Response.

PRESENTED AT

COMPLETE TESTBED

Figure 5. C-HIL Complete Testbed.